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In this Brief Report a method is presented to achieve both stabilization of chaotic motion to a steady state
and tracking of any desired trajectory. The proposed approach is based on backstepping design and consists in
a recursive procedure that interlaces the choice of a Lyapunov function with the design of feedback control.
The main feature of this technique is that it gives the flexibility to build a control law by avoiding cancellations
of useful nonlinearities, so that the goals of stabilization and tracking are achieved with a reduced control
effort. A comparison with the differential geometric method clearly highlights the advantages of the proposed
approach.@S1063-651X~97!12110-9#
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Many mechanical, chemical, or electronic systems can
hibit chaotic dynamics@1–3#. Since chaos is unpredictab
and may lead to vibrations and fatigue failures in mechan
systems, its suppression is generally advantageous. Co
quently, the control of chaos has received great interes
recent years@4–8#. The early studies have been devoted
the stabilization of periodic orbits embedded in a chao
attractor via the Ott-Grebogi-York~OGY! technique @5#.
However, since steady state solutions represent the m
practical operation mode in many chaotic systems such
electronic oscillators@3# or laser systems@6#, it is important
to develop control technique to drive a strange attractor
only to a periodic orbit but also to a steady state. To so
this problem, the occasional proportional feedback~OPF!
technique or conventional linear feedback methods h
been proposed@7,8#. Unfortunately, since these methods gi
nonlinear closed-loop systems, the corresponding dyna
analysis is not simple and the computation of the feedb
gains is trial and error. These drawbacks can be overcom
applying the differential geometric approach as shown in@9#,
where the idea is to algebraically transform a nonlinear s
tem dynamics into a linear one so that linear control te
niques can be utilized.

In this Brief Report a further contribution for controllin
chaos is given. The proposed approach, based on back
ping design, consists in a recursive procedure that interla
the choice of a Lyapunov function with the design of fee
back control@10,11#. The key idea is to utilize the Lyapuno
method by breaking the design problem for the full syst
into a sequence of design problems for lower-order~even
scalar! systems. Thus, by exploiting the flexibility assured
lower-order and scalar systems, backstepping design
solve stabilization and tracking problems under conditio
less restrictive than those encountered in other technique
561063-651X/97/56~5!/6166~4!/$10.00
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particular the proposed approach can be applied to the
lowing class of nonlinear strict-feedback systems@10#:

ẋ5 f ~x!1g~x!j1 ,

j̇15 f 1~x,j1!1g1~x,j1!j2 ,

A

j̇k215 f k21~x,j1 ,...,jk21!1gk21~x,j1 ,...,jk21!jk ,

j̇k5 f k~x,j1 ,...,jk!1gk~x,j1 ,...,jk!u, ~1!

where f andg are nonlinear functions withxPRn, whereas
j1 ,j2 ,...,jk andu are scalars.

The nonlinearities f i and gi in the j̇ i equation (i
51,...,k) depend only onx,j1 ,j2 ,...,j i , i.e., on state vari-
ables that are ‘‘fed back.’’ Backstepping design starts c
sidering the variablej1 as a ‘‘virtual control input’’ to sta-
bilize the first equation. Whenj1 has been designed, it goe
on by considering the variablej2 as the virtual control for
the second equation, and so on. Therefore the design o
actual input u(x) is systematically achieved inn steps
@10,11#.

It is worth noting that several chaotic systems, such
Rössler’s chaotic system@12#, Chua’s circuit@3#, the Lorenz
system@13#, and Rössler’s hyperchaotic system@14#, belong
to the class of strict-feedback systems. However, in orde
illustrate the capabilities and the advantages of the propo
approach, the attention is focused on the Lorenz system.
because it has turned out that Lorenz equations can m
other physical systems and are of practical importance
6166 © 1997 The American Physical Society



er

nt

e

-
e

56 6167BRIEF REPORTS
implement circuits for secure communications@15#. The sys-
tem considered herein is described by the following diff
ential equations@1,9#:

ẋ52px1py,

ẏ52xz2y,

ż5xy2z2R, ~2!

whereR5R01u is the Rayleigh number,R0 is the operation
value, p510 is the Prandtl number, andu is the control
parameter. IfR0528, the uncontrolled system~i.e., u50! is
chaotic and there are three unstable equilibrium poi
(C0 ,C0,21), (0,0,2R0), and (2C0 ,2C0,21) whereC0

5AR021. It is worth noting that when the set point is th
state (C0 ,C0,21) the OGY method is not applicable@9#. By
translating the origin of system~2! in the set point (C0 ,C0,
21), the system equations become

ẋ15210x1110x2 ,

FIG. 1. Stabilization via backstepping design:~a! time wave
form of the controlu switched on att520; ~b! time wave forms of
x1 , x2 , andx3 .

FIG. 2. Stabilization via differential geometric method:~a! time
wave form of the controlu switched on att520; ~b! time wave
forms of x1 , x2 , andx3 .
-

s:

ẋ25x12x22~A271x1!x3 ,

ẋ35A27~x11x2!2x31x1x22u. ~3!

The objective is to find a control lawu for stabilizingthe
state of system~3! in the origin. Starting from the first equa
tion, astabilizing functiona1(x1) has to be designed for th
virtual control x2 in order to make the derivative ofV1(x1)
5x1

2/2,

V̇15210x1
2110x1x2 ,

negative definite whenx25a1(x1). By choosinga1(x1)50
and by defining theerror variable z2 :

z25x22a1~x1! ~4!

the following (x1 ,z2) subsystem is obtained:

ẋ15210x1110z2 ,

ż25x12z22~A271x1!x3 ,

FIG. 3. Tracking of sin(t) via backstepping design:~a! time
wave form of the controlu switched on att520; ~b! time wave
form of the outputx2 .

FIG. 4. Tracking of sin(t) via differential geometric method:~a!
time wave form of the controlu switched on att520; ~b! time
wave form of the outputx2 .
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for which a candidate Lyapunov function isV2(x1 ,z2)
5V1(x1)1 1

2 z2
2. Since its time derivative

V̇25210x1
21z2@11x12z22~A271x1!x3#

becomes negative definite by choosing the virtual controx3
as

x35a2~x1 ,z2!5
11x1

A271x1

the deviation ofx3 from the stabilizing functiona2 ,

z35x32
11x1

A271x1

, ~5!

gives the following system in the (x1 ,z2 ,z3) coordinates:

ẋ15210x1110z2 ,

ż25x12z22~A271x1!~z31a2!,

ż35@A27~x11z2!2z32a21x1z22u#

2F 11A27

~A271x1!2
~210x1110z2!G .

By iterating the previous steps, the derivative
V3(x1 ,z2 ,z3)5V21 1

2 z3
2,

V̇35210x1
22z2

21z3FA27x12z32
11x1

A271x1

2u

2
11A27~210x1110x2!

~A271x1!2 G ,

becomes negative definite by choosing the input

u5A27x12
11x1

A271x1

2
11A27~210x1110x2!

~A271x1!2
, ~6!

which proves that in the (x1 ,z2 ,z3) coordinates the origin
has been stabilized. In view of Eqs.~4! and~5! the origin in
the (x1 ,x2 ,x3) coordinates has the same properties. It can
concluded that Eq.~6! represents the control law for stabiliz
ing system~2! in (C0 ,C0 ,21).

Now, the goal is to find a control lawu such that a scala
output tracks any desired trajectoryr (t), including stable or
al

d

f

e

unstable limit cycles as well as chaotic trajectories. Ley
5x2 be the output and letz2 be the deviation ofx2 from the
target, i.e.,z25x22r (t). Given V25z2

2/2, its time deriva-
tive,

V̇25z2@x12z22r ~ t !2~A271x1!x32 ṙ ~ t !#,

becomes negative by choosing the virtual controlx3 as

x35a25
x12r 2 ṙ

A271x1

.

Again, givenV35V21z3
2/2, wherez35x32a2 is the de-

viation of the virtual control from the stabilizing function
the time derivative

V̇352z2
22z3@z2A271z2x12A27~x11x2!1z3

1a22x1x21u1ȧ2#

is negative by choosing the input

u5
~10x1210x2!~A271r 1 ṙ !

~A271x1!2
1

2ṙ 1 r̈ 2x11r

A271x1

1r ~A271x1!1A27x1 , ~7!

which assures thatx2 tracks the reference signalr .
Now a comparison with the differential geometric meth

@9# is carried out. As far as the authors are aware, this te
nique was the only one able to control chaos in a system
way. To illustrate the advantages of the proposed appro
numerical simulations concerning stabilization by using
backstepping design are reported in Fig. 1, whereas the
sults obtained via the differential geometric method a
shown in Fig. 2. With reference to tracking, the results a
reported in Figs. 3 and 4, respectively. All these figures hi
light the fact that backstepping design is more efficient
cause it requires less control effort than the differential g
metric method. The reason is that backstepping pursues
goals of stabilization and tracking rather than that of line
ization.

In conclusion, an approach to control chaos based
backstepping design has been presented. The advantag
the suggested technique can be summarized as follows:~1! it
is a systematic procedure for controlling chaos;~2! it can be
applied to several chaotic systems;~3! both stabilization and
tracking can be achieved even if the target is outside
strange attractor; and~4! it requires less control effort in
comparison with the differential geometric method.
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