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In this Brief Report a method is presented to achieve both stabilization of chaotic motion to a steady state
and tracking of any desired trajectory. The proposed approach is based on backstepping design and consists in
a recursive procedure that interlaces the choice of a Lyapunov function with the design of feedback control.
The main feature of this technique is that it gives the flexibility to build a control law by avoiding cancellations
of useful nonlinearities, so that the goals of stabilization and tracking are achieved with a reduced control
effort. A comparison with the differential geometric method clearly highlights the advantages of the proposed
approach[S1063-651X97)12110-9

PACS numbe(s): 05.45+b

Many mechanical, chemical, or electronic systems can exparticular the proposed approach can be applied to the fol-
hibit chaotic dynamicg1-3]. Since chaos is unpredictable lowing class of nonlinear strict-feedback systefrhg]:
and may lead to vibrations and fatigue failures in mechanical

systems, its suppression is generally advantageous. Conse- x=f(X)+9g(x)&;,
guently, the control of chaos has received great interest in
recent year$4—8|. The early studies have been devoted to $1=f1(x £)+ 01, E) &

the stabilization of periodic orbits embedded in a chaotic
attractor via the Ott-Grebogi-YorKOGY) technique[5].
However, since steady state solutions represent the most
practical operation mode in many chaotic systems such as
electronic oscillator$3] or laser systemfg], it is important o= (X € k) F 1 (X, €1y 1) &k
to develop control technique to drive a strange attractor not
only to a periodic orbit but also to a steady state. To solve
this problem, the occasional proportional feedbd€P
technique or conventional linear feedback methods have ) ) )
been proposef¥,8]. Unfortunately, since these methods give Wheref andg are nonlinear functions witk e R", whereas
nonlinear closed-loop systems, the corresponding dynamiéi:€2.---.ék andu are scalars. )
analysis is not simple and the computation of the feedback The nonlinearitiesf; and g; in the & equation {
gains is trial and error. These drawbacks can be overcome by 1,...k) depend only orx,¢;,é,,....&, i.e., on state vari-
applying the differential geometric approach as showf®in  ables that are “fed back.” Backstepping design starts con-
where the idea is to algebraically transform a nonlinear syssidering the variabl€; as a “virtual control input” to sta-
tem dynamics into a linear one so that linear control techbilize the first equation. Whe#, has been designed, it goes
nigues can be utilized. on by considering the variablg, as the virtual control for

In this Brief Report a further contribution for controlling the second equation, and so on. Therefore the design of the
chaos is given. The proposed approach, based on backstegstual input u(x) is systematically achieved im steps
ping design, consists in a recursive procedure that interlacdd0,11.
the choice of a Lyapunov function with the design of feed- It is worth noting that several chaotic systems, such as
back contro[10,11]. The key idea is to utilize the Lyapunov Rossler’s chaotic systefii2], Chua’s circuif 3], the Lorenz
method by breaking the design problem for the full systenmsystem[13], and Rasler’'s hyperchaotic systef4], belong
into a sequence of design problems for lower-or@ren  to the class of strict-feedback systems. However, in order to
scalaj systems. Thus, by exploiting the flexibility assured by llustrate the capabilities and the advantages of the proposed
lower-order and scalar systems, backstepping design caapproach, the attention is focused on the Lorenz system. This
solve stabilization and tracking problems under conditiondecause it has turned out that Lorenz equations can model
less restrictive than those encountered in other techniques. bither physical systems and are of practical importance to

-gk:fk(xigli'"1§k)+gk(xagll"'1§k)ul (1)
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FIG. 1. Stabilization via backstepping desigi® time wave
form of the controlu switched on at=20; (b) time wave forms of
X1, Xo, andxs.

implement circuits for secure communicatidd$]. The sys-

tem considered herein is described by the following differ-

ential equation$1,9]:

X=—px+py,
y=—xz-y,
z=xy—z—R, 2

whereR=R;+ u is the Rayleigh numbeR, is the operation
value, p=10 is the Prandtl number, and is the control
parameter. IRy= 28, the uncontrolled systefne.,u=0) is

chaotic and there are three unstable equilibrium points:

(Co,CO,—l), (0,0,—R0), and (_CQ,—Co,_l) WhereCO

=Rp—1. It is worth noting that when the set point is the

state Cy,Cp, —1) the OGY method is not applicali@]. By
translating the origin of systeit®) in the set point Cq,Co,
—1), the system equations become

5(1: —10xl+ 10)(2,

FIG. 2. Stabilization via differential geometric methdd} time
wave form of the controli switched on at=20; (b) time wave
forms of x4, X,, andxs.
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FIG. 3. Tracking of sirt) via backstepping design@) time
wave form of the control switched on at=20; (b) time wave
form of the outputx,.

Xo=X1 = Xp— (V274 X1)X3,

X3= V27(X +Xp) —Xg+X1Xo— U. (3)

The objective is to find a control law for stabilizingthe
state of systen3) in the origin. Starting from the first equa-
tion, astabilizing functiona4(x4) has to be designed for the
virtgal control X, in order to make the derivative &f;(X;)
=X7/2,

V= —10¢3+ 10x;X,,

negative definite whe®,= a4(X4). By choosinge,(x,) =0
and by defining theerror variable z:

2= X~ a1(Xy) (4)
the following (X;,2z,) subsystem is obtained:

)'(1: _10)(1+ 1022,

2y=X1— 2~ (N2T+X1)X3,
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FIG. 4. Tracking of sirt] via differential geometric methoda)

time wave form of the control switched on att=20; (b) time
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unstable limit cycles as well as chaotic trajectories. yet
=X, be the output and let, be the deviation ok, from the

target, i.e.,z,=Xx,—r(t). Given V2=z§/2, its time deriva-

for which a candidate Lyapunov function ¥,(x;,z,)
=V (x1)+ %z%. Since its time derivative

Vo= =10+ 2,[ 11X, — Zp— (V27+X1)Xs] tive,
becomes negative definite by choosing the virtual contsol \'/zzzz[xl_zz_ r(t)—(V27+x)X3—1(t)],
as
becomes negative by choosing the virtual conk:phs
( ) 11x4 .
X3= ap(X1,22) = =~ Xy—r—r
V27+ %, Xg= Qp= .
27+ %,

the deviation ofx; from the stabilizing functiornu,,

Again, givenVy=V,+73/2, wherez;=x3— a is the de-
viation of the virtual control from the stabilizing function,
the time derivative

ng —25—23[22\/2—74- ZoX1— \/2—7(X1+ Xp)+23

+C¥2_X1X2+ u-+ az]

11x,
Z3=Xz— ——,
S 27+,

gives the following system in thex(,z,,z;) coordinates:

©)

5(1: - 10)(1+ 1022,

_ is negative by choosing the input
2y=X1— 25— (N27+X1) (23 + ay),

_ (10X;—10X,) (\27+T+1)  2r+F—x;+r1
23=[\/2—7(x1+22)—z3—a2+x122—u] u=

(V27+x,)? V27+x,
) (J;f—?rz(—lmﬁlozz) . FrORTE R 20, ?
X1

which assures that, tracks the reference signel

Now a comparison with the differential geometric method
[9] is carried out. As far as the authors are aware, this tech-
nigue was the only one able to control chaos in a systematic

By iterating the previous steps, the derivative of

2
V3(X1,25,23) =V, + 375,

: 11X way. To illustrate the advantages of the proposed approach,
2 2 1 . . . . L )
Va=—10x]— 25+ 23| V27X, —Z3— \/_——u numerical simulations concerning stabilization by using the
27+, backstepping design are reported in Fig. 1, whereas the re-

sults obtained via the differential geometric method are
shown in Fig. 2. With reference to tracking, the results are
reported in Figs. 3 and 4, respectively. All these figures high-
light the fact that backstepping design is more efficient be-
cause it requires less control effort than the differential geo-
metric method. The reason is that backstepping pursues the

~ 11\/27(— 10x; + 10x,)
(V27+x4)?

becomes negative definite by choosing the input

u= \/2—7)(1_ 11x, _ 11\/2—7(—10x1+10x2) 6) goals of stabilization and tracking rather than that of linear-
27+ %, (N27+x,)? ization.

In conclusion, an approach to control chaos based on
which proves that in thexq,z,,z3) coordinates the origin backstepping design has been presented. The advantages of
has been stabilized. In view of Eqgl) and(5) the origin in  the suggested technique can be summarized as folldvi:
the (x1,X2,X3) coordinates has the same properties. It can bés a systematic procedure for controlling cha(®;it can be

concluded that Eq6) represents the control law for stabiliz-
ing system(2) in (Cy,Cy,—1).

Now, the goal is to find a control law such that a scalar
output tracks any desired trajectarft), including stable or

applied to several chaotic systen(3) both stabilization and

tracking can be achieved even if the target is outside the

strange attractor; an@) it requires less control effort in
comparison with the differential geometric method.
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